Nanotechnology Project

Get the findNano iPhone application

Inventories

Environment, Health and Safety Research

Effects of Nanomaterials on Human Blood Coagulation

Project Information

Principal InvestigatorPeter L Perrotta
InstitutionWest Virginia University
Project URLView
Relevance to ImplicationsHigh
Class of NanomaterialEngineered Nanomaterials
Impact SectorHuman Health
Broad Research Categories Hazard
Risk Assessment
NNI identifier

Funding Information

CountryUSA
Anticipated Total Funding$375,000.00
Annual Funding$125,000.00
Funding SourceEPA
Funding MechanismExtramural
Funding SectorGovernment
Start Year2005
Anticipated End Year2008

Abstract/Summary

Objective:

The goal of this project is to determine the effects of commercially available nanomaterials on the human blood coagulation system. The rationale is based on the fact that common human diseases, such as myocardial infarction, are caused by abnormalities of blood coagulation that predispose to thrombosis (clots) and these diseases are clearly influenced by environmental factors. Because of their large surface area and reactivity, nanomaterials that enter the workplace or home have the potential to adversely affect blood coagulation, which could result in clotting abnormalities.

Approach:

A comprehensive approach will be used to study how a wide-range of commercially prepared nanomaterials affects human blood coagulation. Techniques will focus on the two major components of the clotting system: blood coagulation proteins and platelets. First, the toxic effects of nanomaterials on blood clotting proteins will be studied using coagulation-specific laboratory assays. We will focus on the ability of nanomaterials to promote and/or retard the catalytic activity of coagulation enzymes. This is because adsorption of enzymes on the extensive available surface of nanomaterials may alter the functional groups of the enzymes and, hence, their enzymatic activity. Surface interactions between blood coagulation proteins and nanomaterials will be further detailed at the molecular level using surface plasmon resonance and atomic force microscopy. Finally, classes of nanomaterials will be identified that have the ability to “activate” human platelets because platelet activation plays a role in many thrombotic diseases.

Expected Results:

Studies outlined in this proposal will identify nanomaterials that can harm the human blood coagulation system. Furthermore, thresholds of toxicity and dose-response effects of coagulation proteins to nanomaterials will be quantified. The advanced techniques utilized will help to understand the complex interactions between nanomaterials, coagulation enzymes, and platelets. Through our findings a system for classifying engineered nanomaterials based on their physiologic effects on blood coagulation will be developed. This will help to predict whether novel classes of nanomaterials and/or functionalized nanomaterials can potentially harm human blood coagulation.