Nanotechnology Project

Get the findNano iPhone application

Inventories

Environment, Health and Safety Research

Methodology Development for Manufactured Nanomaterial Bioaccumulation Test

Project Information

Principal InvestigatorYongsheng Chen
InstitutionArizona State University - Main Campus , University of Delaware
Project URLView
Relevance to ImplicationsHigh
Class of NanomaterialEngineered Nanomaterials
Impact SectorEnvironment
Broad Research Categories Generation, Dispersion, Transformation etc.
NNI identifierc1-1

Funding Information

CountryUSA
Anticipated Total Funding$399,768.00
Annual Funding$133,256.00
Funding SourceEPA
Funding Mechanism
Funding Sector
Start Year2006
Anticipated End Year2009

Abstract/Summary

Objective: Because of their small size and high specific surface area, manufactured nanomaterials have enhanced mobility and, potentially, greater toxicity as they have almost unrestricted access into aquatic organisms and the human body. However, there is no data available on whether these manufactured nanomaterials are toxic within months or years. So, these nanomaterials could constitute a new class of non-biodegradable pollutants and may bioaccumulate in the food chain. Consequently, it is imperative to develop a suitable methodology to evaluate the potential risks of bioaccumulation of manufactured nanomaterials in aquatic organisms so that we can understand their potential impacts and avoid serious environmental consequences, such as with DDT (dichlor-diphenyl-trichloroethane) and PCBs (polychlorinated biphenyls). The objectives of this project are: 1) to develop suitable manufactured nanomaterial bioaccumulation testing procedures to assure data accuracy and precision, test replication, and the comparative value of test results; 2) to evaluate how the forms of these manufactured nanomaterials affect the potential bioavailability and bioconcentration factor (BCF) in phytoplankton; 3) to determine the potential biomagnification of manufactured nanomaterials in zooplankton; and 4) to determine the potential biomagnification of manufactured nanomaterials in fish. Approach: The proposed research brings a multidisciplinary team, which includes nanomaterial engineers and chemists, physiologists, and molecular biologists. A hypothesis of whether manufactured nanomaterials can be accumulated in aquatic organisms will be tested. The bioconcentration, bioaccumulation, and biomagnification of manufactured nanomaterials will be evaluated in a simulated food chain and aquatic organisms, consisting of algae, daphnia, and zebrafish. Advanced analysis techniques and methods including image shape analyzing particle counter, transmission electron microscopy (TEM), secondary ion mass spectrometer (SIMS), and electron microscopy will be employed for analysis of nanomaterial size, exploration of bioavilability and dispersion pathways of nanomaterials entering into cells of an aquatic organism, and determination of the ratio of nanomaterials dispersed in the organs of an organism. Expected Results: Any risk assessment requires basic information on toxicity to biota and the likelihood of uptake into the food chain. The proposed work will provide essential nanomaterial bioaccumulation testing procedures and fundamental data on the movement and transformation capabilities of nanomaterials in aquatic organisms and the first evidence that such nanomaterials can or cannot be biologically accumulated in aquatic organisms. This research would ultimately allow us to better understand the consequences of manufactured nanomaterials in the environment.