Nanomaterials for Cancer Diagnostics and Therapeutics
Project Information
Principal Investigator | Chad A Mirkin |
Institution | NORTHWESTERN UNIVERSITY |
Project URL | View |
Relevance to Implications | Some |
Class of Nanomaterial | Engineered Nanomaterials |
Impact Sector | Human Health |
Broad Research Categories |
Hazard Characterization Risk Assessment |
NNI identifier | b1-10 |
Funding Information
Country | USA |
Anticipated Total Funding | $18,478,257.00 |
Annual Funding | $3,695,651.40 |
Funding Source | NIH |
Funding Mechanism | |
Funding Sector | |
Start Year | 2005 |
Anticipated End Year | 2010 |
Abstract/Summary
The potential impact of nanotechnology is well recognized, and significant advances in the medical field are expected to be realized first. It is possible that nanotechnology will be the fundamental driver of advances in oncology and cancer research leading to near-term benefits for patients, and yet formidable challenges must be met. Northwestern University proposes to meet these challenges through the establishment of a Nanomaterials for Cancer Diagnostics and Therapeutics Center for Cancer Nanotechnology Excellence (CCNE). To be led by the Principal Investigator, Chad A. Mirkin, the proposed CCNE represents the development of a strong integrated partnership between the NU Robert H. Lurie Comprehensive Cancer Center (RHLCCC), and the NU International Institute for Nanotechnology (IIN). The RHLCCC is an NCI designated, comprehensive, University-based, matrix cancer center conducting a broad range of multidisciplinary basic, clinical, and population science research with over $116 million dollars in annual extramural funding. The NU International Institute for Nanotechnology (IIN) is an umbrella organization which unites all of the nanotechnology research and educational programs at NU, and encourages and supports collaborations with the Center for Nanoscale Materials (CNM) at Argonne National Laboratory. Investigators in the NU IIN currently are supported by more than $130 million in extramural funding. Building upon the significant advances in cancer research and in nanotechnology - particularly in the detection arena - obtained at NU, and operating within the framework of a single university will permit this CCNE to optimize the intensive level of integration and collaboration required to create an accelerated pathway-from conception to clinical trial-for development of nanomaterials and nanodevices to overcome cancer. Other academic collaborators include the University of Chicago, the University of Illinois/Urbana-Champaign, and Yonsei University, South Korea.