

Nanotechnology and human health impact

A framework for strategic research?

Andrew D. Maynard

Chief Science Advisor

THE PEW CHARITABLE TRUSTS

Woodrow Wilson Center, Project on Emerging Nanotechnologies

Challenge

- Nanotechnology has great potential
 - Revolutionary Technology
 - "Engine of Innovation"
 - Many societal and environmental benefits anticipated
- BUT..
 - There may be unanticipated roadblocks, including unexpected risk to human health and the environment
- Sustainable nanotechnology will depend on
 - Societal Acceptance
 - Minimizing risk
 - Maximizing benefits

Sustainable Nanotechnology					
Specificity	Existing Knowledge		Integration		
Risk Assessment	Characterization		Interdisciplinary Collaboration		
Global Partnerships		Rationality			

Specificity

- Nanotechnology is:
 - Diverse
 - Enabling
 - Transient
 - Cross-disciplinary
 - Generic
- Implications-focused research must:
 - Be materials, devices and products-specific
 - Differentiate between materials and products presenting significant, marginal and no potential nano-specific risk

Setting Boundaries

Engineered nanomaterials which potentially present new challenges

- Criteria:
 - Nanomaterials capable of entering or interacting with the body
 - Nanomaterials which potentially exhibit nanostructure-dependent • biological activity

Simple, complex, "smart". Aerosols, powders, suspensions, slurries

Comminution

Aerosols from grinding, cutting, machining nanomaterials

Degredation/Failure

Aerosols and suspensions resulting from degradation and failure of nanomaterials

Unintentional use

Potential exposure from unanticipated/unintentional use

Existing Knowledge

Nanotechnology is new, unique and innovative, but...

...Over 100 years of health-impact knowledge counts for something

- Similarity, analogy and first principles:
 - Aerosol behavior
 - Exposure control
 - Health effects general
 - Hazard ultrafines
 - Physicochemical significance e.g. asbestos and crystalline silica
- Extrapolation can be dangerous, but used wisely it can provide strategic direction

Lessons from "conventional" materials

Comparison of insoluble materials with different biological activities

Maynard and Kuempel (2005)

Integration

- The reactive, linear, compartmentalized model:
 - "Chemists make the stuff, Epidemiologists document who gets sick, Toxicologists tell us why, Risk Assessors quantify the likelihood of getting sick, and hygienists help reduce the chances of getting sick."
- This will not work for new technologies
 - Complexity
 - Emergent behavior
 - Unacceptable social burden
- The proactive holistic (systemic) model:
 - Integration of risk-based and applications-based research to preempt and proactively minimize adverse health impact.

Sustainable Nanotechnology				
Specificity	Existing Knowledge	Integration		
Risk Assessment				

Risk Assessment

(Simplified schematic)

Sustainable Nanotechnology				
Specificity	Existing Knowledge Integration			
Risk Assessment	Characterization			

Characterization

- Risk can not be quantified and quantitatively reduced without an accurate description of the materials and products being used.
- The complexity of many nanomaterials demands sophisticated characterization - frequently beyond what is considered 'normal'

"The dependence of nanomaterial behavior on physical and chemical properties places stringent requirements on physicochemical characterization, and includes assessing a range of properties..."

Oberdörster et al. Particle and Fibre Toxicology 2005 2:8

Example Airborne Single Walled Carbon Nanotubes

Woodrow Wilson Center, Project on Emerging Nanotechnologies

Sustainable Nanotechnology				
Specificity	Existing Knowledge Integration			
Risk Assessment	Characterization	Interdisciplinary Collaboration		

- Major scientific breakthroughs occur in the grey regions between established disciplines and fields of research
- Nanotechnology is no exception
- Understanding implications to human health will also require working together in [sometimes] uncharted waters between disciplines

Sustainable Nanotechnology					
Specificity	Existing Knowledge		Integration		
Risk Assessment	Characterization		Interdisciplinary Collaboration		
Global Partnerships			Rationality		

Global Collaboration

- Global implications require global cooperation and collaboration
- Complex problems require coordinated approaches to finding solutions
- Resources are limited
- Synergism

Rationality

Cutting through the hype

Nanotechnology is revolutionary...

...but we've been through technology revolutions before

- Nanomaterials have unique properties...
 ...but the body responds to foreign materials in limited ways
- Little is known about the health impact of engineered nanomaterials...

...but we're not starting out from a point of total ignorance

Beyond the hype and confusion, sustainable nanotechnology will ultimately depend on scientifically valid questions being asked, and scientifically robust answers being found.

Dr Andrew D. Maynard

Chief Science Advisor Project on Emerging Nanotechnologies Woodrow Wilson International Center for Scholars at the Smithsonian Institute One Woodrow Wilson Plaza 1300 Pennsylvania Ave. NW Washington DC 20004 Tel: 202 691 4311 Email: andrew.maynard@wilsoncenter.org URL: www.wilsoncenter.org