
# Nanotechnology: Will it Drive a New Innovation Economy for the U.S.?



Philip Shapira<sup>1,2,3</sup> Alan Porter<sup>1,3</sup>

Presentation and Webcast, Project on Emerging Nanotechnologies, Washington, DC, March 23, 2009

<sup>1</sup>Georgia Tech School of Public Policy, Atlanta, USA <sup>2</sup>Manchester Institute of Innovation Research, Manchester Business School, UK <sup>3</sup>Center for Nanotechnology in Society (CNS-ASU), Tempe, USA

Contact: pshapira@gatech.edu

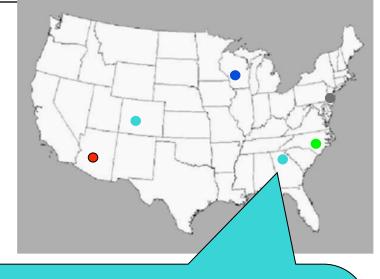
# Overview

### 1. Introduction

- Center for Nanotechnology in Society (CNS-ASU)
- Georgia Tech group
- 2. Trend in Nanotechnology Discovery
  - Characterizing the state of nanoscience
- 3. Early Nanotechnology Innovation
  - Where, who, and what?
- 4. Issues and Implications
- 5. Q&A

# What is Nanotechnology?

- Science, engineering and technology of understanding and controlling matter at c.
   1-100 nm\* scale (= nanoscale)
- To develop materials, devices, and systems that have novel properties and functions due to their nanoscale
- Argued to be a transformative <u>general purpose</u> <u>technology</u> with fundamental technological, economic and societal consequences


### Center for Nanotechnology and Society (CNS-ASU)

#### **MISSION**

- **Research** the societal implications of nanotechnologies
- Train a community of scholars with new insight into the societal dimensions of \*NSE
- Engage the public, policy makers, business, & \*NSE researchers in dialogues about NSE's goals and implications
- Partner with \*NSE laboratories to introduce greater reflexiveness in the R&D process

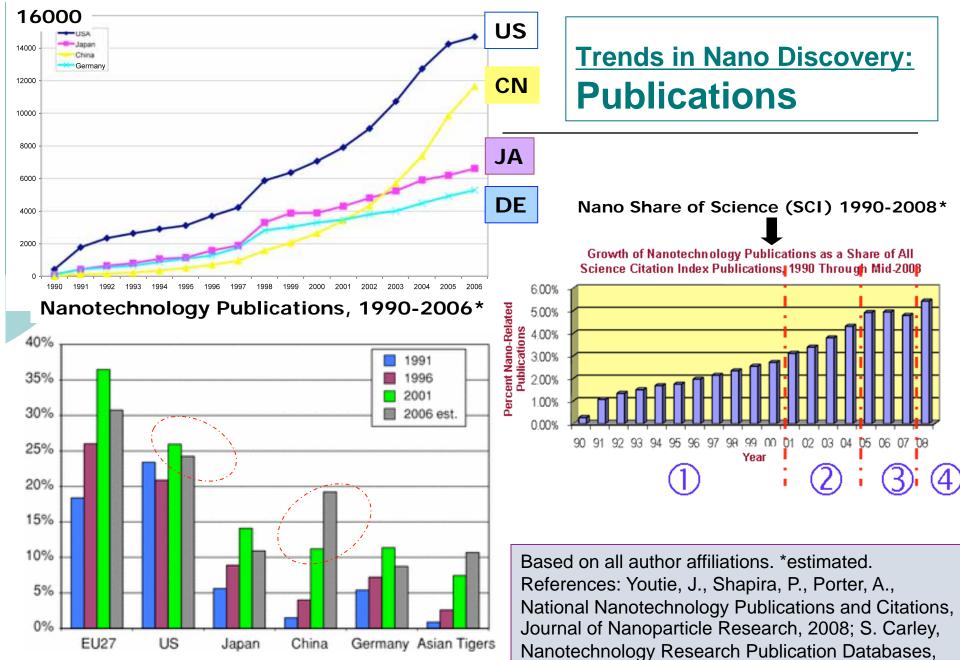
#### SPONSORSHIP: NSF 2005-2010+

- Arizona State University
- University of Wisconsin-Madison
- Georgia Tech
- North Carolina State University
- Rutgers University
- University of Colorado, Boulder



#### Georgia Tech group:

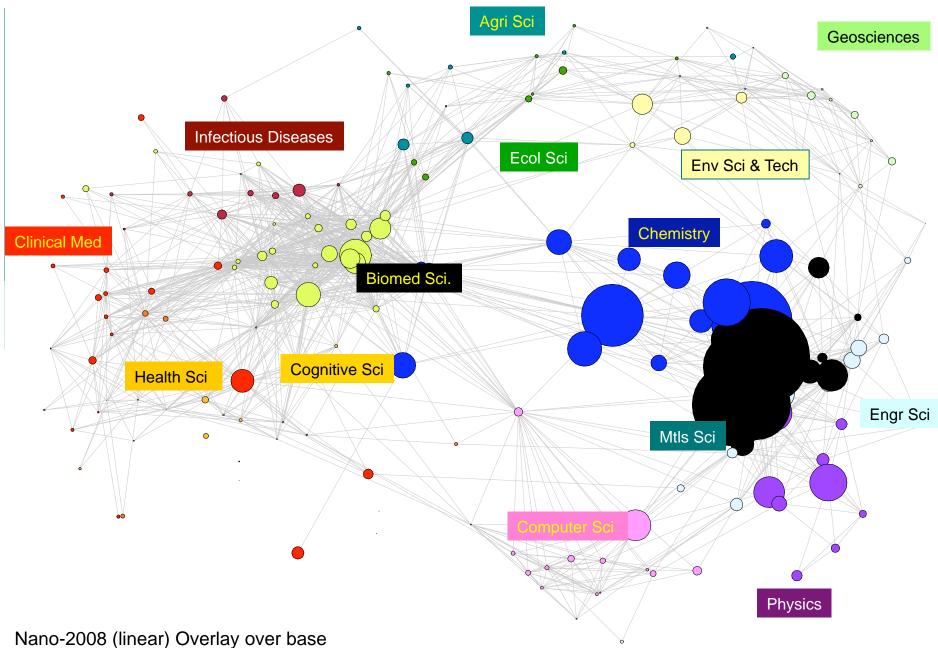
- Q. Who is doing what kinds of \*NSE research?
- Q. How is \*NSE innovation occurring?
- O. Actors & drivers? Technological, economic, and regional impacts?


#### Center for Nanotechnology in Society – Research Program Assessment

# Georgia Tech group

#### Core Resources:

- o Refined two-stage two-stage bibliometric search method\*
- o Development of large-scale global databases of
  - Nanotechnology publications (c1.2 million, 1990-2008, including 508,000+ SCI)
  - 61,000 nano patents (70 patent offices, MicroPatents); + PATSTAT (1990-2008)
- Complementary data and tools (e.g. small nano-firm start-up data; MNE nano patent families)
- Field research and case studies


\*<u>Key Publication</u>: Refining search terms for nanotechnology. Porter, Youtie, Shapira, Schoeneck. *J. NanoParticle Research*, 2008. Nanotechnology publications, leading countries, annual, 1996-2006



Updated to 2008, RTTA-1 Profile, 2008.

### Trends in Nano Discovery: Knowledge interchange

- Next slide overlays 2008 nano research (from an 8-module, Boolean search) in the Science Citation Index (SCI) on a base map of science
- Nano engages a wide swath of today's researchers! (~5% of SCI now)
- Following table shows that there is significant research knowledge interchange – nano is not confined within disciplinary "silos"



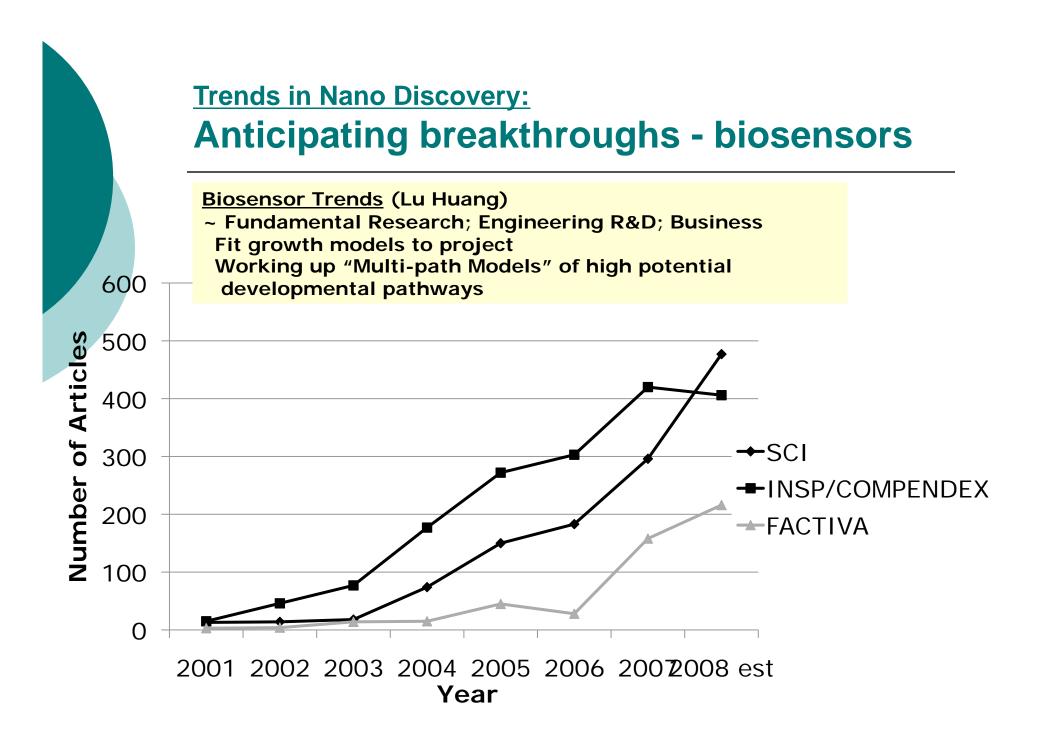
Nano-2008 (linear) Overlay over base 175 Subject Category Science Map Leydesdorff&Rafols (Forthcoming) –

Reference: Porter, A.L., Youtie, J., How interdisciplinary is nanotechnology? J Nanoparticle Research, 2009 (Online First)



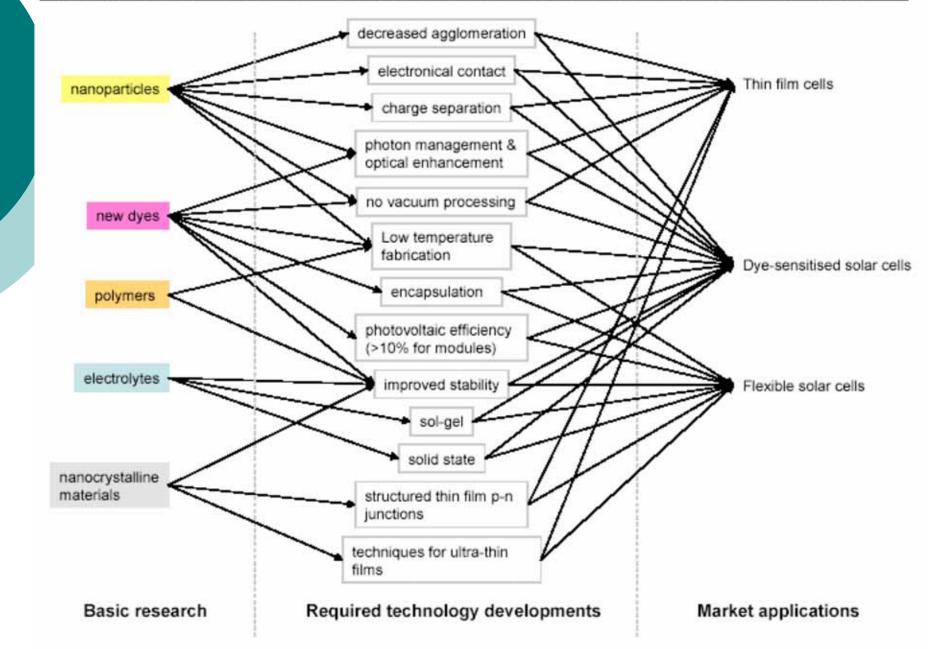
#### Trends in Nano Discovery:

% of Nano Articles in each Macro-discipline (rows) citing a source in the Macro-discipline (Column)


| # Pubs | Macro-<br>Disciplines:<br>Publications \<br>Cited | Mtls Sci | Chemistry | Physics | <b>Biomed Sci</b> | Engr Sci |
|--------|---------------------------------------------------|----------|-----------|---------|-------------------|----------|
| 19301  | Mtls Sci                                          | 98       | 77        | 57      | 58                | 44       |
| 7020   | Chemistry                                         | 91       | 96        | 53      | 77                | 33       |
| 2989   | Physics                                           | 89       | 68        | 90      | 56                | 29       |
| 2647   | Biomed Sci                                        | 51       | 83        | 24      | 94                | 19       |
| 2503   | Engr Sci                                          | 95       | 74        | 48      | 54                | 81       |

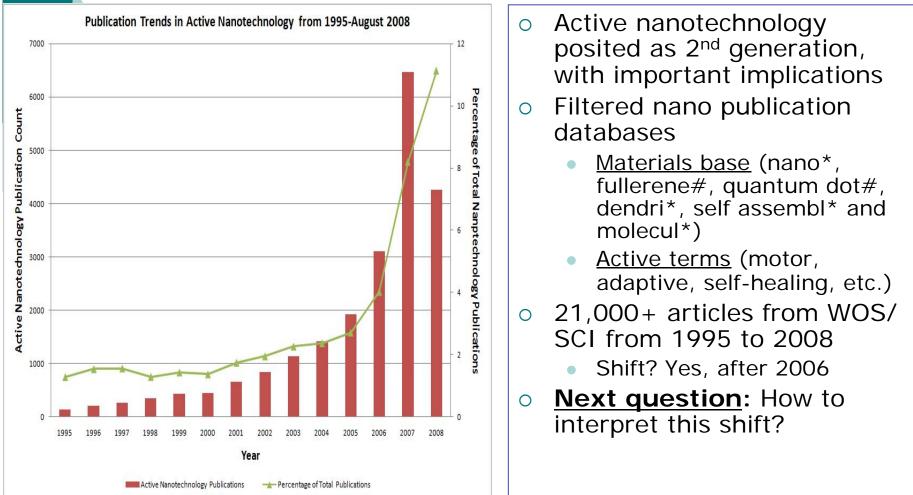
Reference: Porter, A.L., Youtie, J., How interdisciplinary is nanotechnology? J Nanoparticle Research, 2009 (Online First)

### Trends in Nano Discovery: Changing nano shares


| Subject Category                        | % of nano publications for year |      |      |      |      | % Change<br>1991-200 | 2008<br>Rank |
|-----------------------------------------|---------------------------------|------|------|------|------|----------------------|--------------|
|                                         | 1991                            | 1995 | 2000 | 2005 | 2008 | 8                    | Ralik        |
| Materials Science,<br>Multidisciplinary | 13.0                            | 19.5 | 17.3 | 19.9 | 25.8 | +100%                | 1            |
| Physics, Applied                        | 25.7                            | 18.0 | 18.0 | 16.4 | 18.7 | -27%                 | 2            |
| Chemistry, Physical                     | 8.3                             | 11.5 | 13.7 | 14.5 | 17.9 | +115%                | 3            |
| Physics, Condensed Matter               | 16.5                            | 17.2 | 16.7 | 12.0 | 12.9 | -22%                 | 4            |
| Nanoscience & Nanotechnology            | n/a                             | n/a  | n/a  | n/a  | 12.6 |                      | 5            |
| Chemistry, Multidisciplinary            | 4.5                             | 6.4  | 7.5  | 10.3 | 10.6 | +133%                | 6            |
| Polymer Science                         | 4.7                             | 5.2  | 5.2  | 6.5  | 6.2  | +32%                 | 7            |

Source: Analysis by the Program in Research and Innovation Systems Analysis, Center for Nanotechnology and Society (CNS-ASU) at Georgia Tech. Bibliometric definition as in Porter et al. 2008. SCI nanoscience/nanotechnology publications, 508,000, 1991-2008 (part-year).




#### Prospects for Nano-enhanced Solar Cells (Ying Guo)

Basic research underway with the technology developments required to achieve the desired applications





### Trends in Nano Discovery: Is there a shift to "active nanotechnology?"



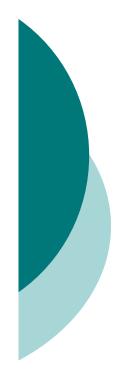
Reference: Subramanian V, Youtie J, Porter A.L, Shapira P (2009) Is there a shift to "active nanotechnology"? (in preparation)

## Trends in Nano Discovery: What Products Can We Expect?

- **Remote Actuated Active Nanostructures**: Nanotechnologies whose active principle is remotely activated or sensed.
  - Magnetic, electrical, light and wireless tagged nanotechnologies, used in light harvesting antenna, optoelectronics, remote-actuated drug delivery, wireless sensors, etc.
- **Environmentally Responsive Active Nanostructures**: Nanotechnologies those are sensitive to environmental stimuli like pH, temperature, light, oxidation-reduction, certain chemicals.
  - Sensors, responsive drug delivery, environmentally responsive actuators, etc.
- **Miniaturized Active Nanostructures**: Nanotechnologies which are a conceptual scaling down of larger devices and technologies to the nanoscale.
  - Molecular electronics

0

- **Hybrid Active Nanostructures**: Nanotechnologies involving uncommon combinations (biotic-abiotic, organic-inorganic) of materials.
  - DNA, protein, photosystem, etc mobilized on a chip, silicon-organic hybrid nanotechnologies, etc
- **Transforming Active Nanostructures**: Nanotechnologies that change irreversibly during some stage of its use or life.
  - Self-healing materials like metal and plastic coatings which on specific triggers, repair damage caused by corrosion, mechanical damage, etc.


# Early nanotechnology innovation Nano products that exist today

- Sunscreen, cosmetics (titanium dioxide)
- Stain-resistant clothing
- Anti-bacterial socks, dressings, ointments (silver nanoparticles)
- Sports equipment (carbon nanotubes)
- Household appliances, air filters
- Cleansers and polishes

U) DC3

- Semiconductors and processors
- o Paints, finishes, sealants, adhesives
- Drug delivery (micellar nanoparticles)

<u>Ref</u>: 800+ nano-based consumer products on the market Project on Emerging Technologies (2009)



### Current nano-enabled product:

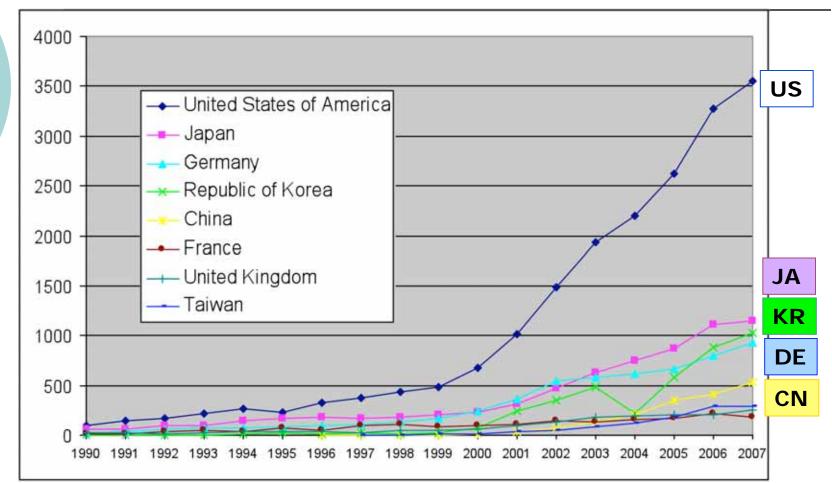


#### Hot-water dispenser

- Nano-coated/alloy heating element
- Boils fast (6 secs), saves energy

### Current nano-enabled product: Manufacturer: Wbnami (Shenzin, China)




#### <u>Highlights</u>

- Nano applications ⇒ existing products
- Nano manufacturing jobs ⇒ globalized
- Production volume ⇒ nextround R&D
  - VCR analogy?

#### Hot-water dispenser

- Nano-coated/alloy heating element
- Boils fast (6 secs), saves energy
- Claimed to improve water quality
- Validation of performance claims and testing

## Early nanotechnology innovation Growth of nano patenting



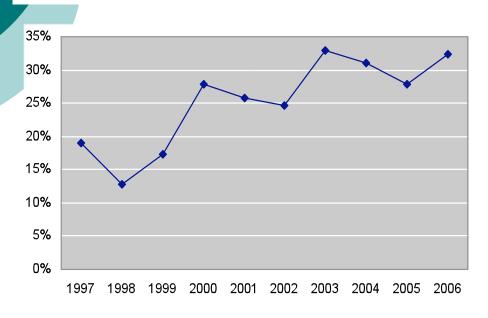
Source: PATSTAT. Patent records by year, 1990-2007 by applicant country. Note: Initial analysis, subject to revision. Nanotechnology definition as in Porter et al. 2008

## Early nanotechnology innovation US nano patents (USPTO granted)

(47% coverage) (38% coverage)

|                                                        | 2001-02                   | 2005-06 |  |
|--------------------------------------------------------|---------------------------|---------|--|
| Top-10 US primary classes                              | Share of total US patents |         |  |
| 257-Active solid-state devices                         | 4.9%                      | 8.1%    |  |
| 428-Stock material or miscellaneous articles           | 7.1%                      | 7.2%    |  |
| 438-Semiconductor device manufacturing: process        | 8.7%                      | 6.9%    |  |
| 424-Drug, bio-affecting and body treating compositions | 6.0%                      | 6.6%    |  |
| 435-Chemistry: molecular biology and microbiology      | 4.2%                      | 4.8%    |  |
| 313-Electric lamp and discharge devices                | 2.3%                      | 3.4%    |  |
| 423-Chemistry of inorganic compounds                   | 2.1%                      | 3.2%    |  |
| 524-Synthetic resins or natural rubbers                | 2.7%                      | 2.9%    |  |
| 250-Radiant energy                                     | 2.7%                      | 2.4%    |  |
| 427-Coating processes                                  | 2.5%                      | 2.4%    |  |
| All USPTO nano patents (N)                             | 3865                      | 9275    |  |

2001-02 2005-06 Share of total US patents\* Top-10 assignee countries US 73.0% 58.0% 6.7% 12.6% Japan China (including Taiwan) 2.5% 6.8% 1.0% 5.1% S. Korea 3.1% 4.9% Germany France 5.1% 3.5% Netherlands 0.8% 1.6% Canada 0.9% 1.6% UK 1.2% 1.0% Switzerland 0.9% 0.8% Total records with assignee 3522 1818

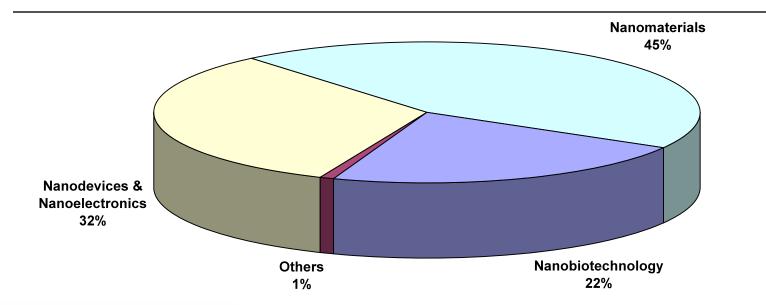

Sectors: Electronics Materials Medical Chemical Energy

<u>Shares</u>: US -Asia +++ Europe +/-

Source: Georgia Tech analysis of MicroPatents Nanotechnology definition as in Porter et al. 2008

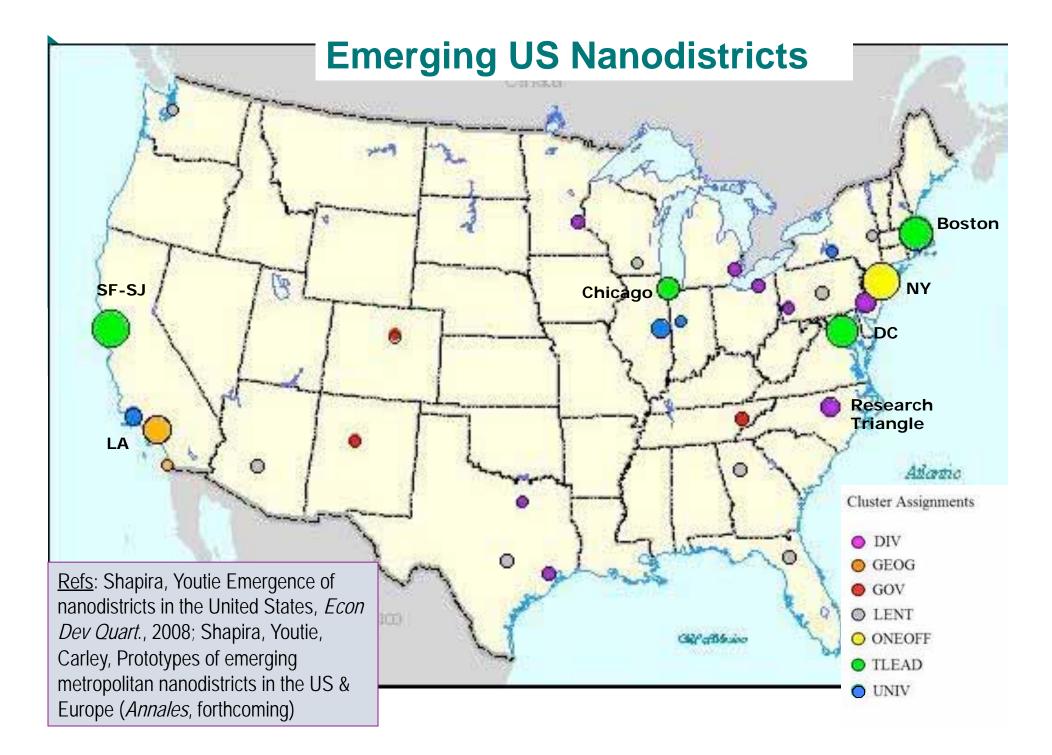


Proportion of U.S. SMEs\* with WIPO PCT filings (relative to U.S. Large)




\* SBA standard definition, less than 500 employees

Source: Andrea Fernández-Ribas with research assistance Ronak Kamdar, Georgia Tech CNS-ASU Group. Additional support obtained through the Kauffman Foundation and Georgia Research Alliance.


- Analysis of WIPO PTC nano-related applications 1997-2006 of 300+ US owned SMEs
- Increased geo-graphic breadth of patent protection; regional/ international (co-) invention patterns observed

### Early nanotechnology innovation New nanotechnology-based firms in US (NNBFs)





Source: Analysis of 230 US NNBFs, 1990-2005, by J. Wang (Georgia Tech doctoral thesis, 2007). See also: Wang, J., Shapira, P., Partnering with Universities: A Good Choice for Nanotechnology Start-up Firms? [under review]



## Early nanotechnology innovation Issues: Multiple uncertainties

- **Scientific uncertainty** (where is the science going, what will the applications be, and in what time frame);
- **Technological uncertainty** (will nano-enabled applications be scalable, reliable, better then conventional technologies);
- Safety (will nano-enabled applications be safe? the science is uncertain); & life-cycle uncertainty (even if declared safe now, will there be a problem in future, cf. asbestos, as scientific knowledge about effects evolves);
- Consumer acceptance (will consumers accept nano-enabled applications, under conditions of debate about safety – will all nano applications be tarred);
- **Regulatory uncertainty** (regulation is a known problem in nano, but there is uncertainty as to how regulations will evolve);
- Labeling uncertainty: What is a nano product?
- **Market and financial uncertainty** (will there be demand, how can we finance, esp. given current recession);
- **Competitive uncertainty** (there are many players in the marketplace, and players from new countries).

<u>Prediction</u>: Fundamental nano applications will take longer; safety & consumer concerns about nano will arise quickly

# Early nanotechnology innovation Policy Implications – for the US

#### Address uncertainty

- Regulatory development
  US & International
- Toxicology & other health & safety studies

### Address implementation environment

- Not just research, but also commercialization
  o Role of states
- Not just high-tech, but also mature industry

### Ongoing research & dialogue

Anticipate implications of nanotechnology



# More information

# • Web sites:

- http://cns.asu.edu/
- http://www.nanopolicy.gatech.edu

 <u>Acknowledgements</u>: This research was supported by the Center for Nanotechnology in Society (CNS-ASU) with sponsorship from the National Science Foundation (NSF Award No. 0531194). The findings and observations contained herein are those of the authors and not necessarily those of NSF.